## RD Sharma Class 10 Math solutions Exercise 4 5 Question 14

RD Sharma Class 10 Math solutions Exercise 4 5 Q14

CBSE sample papers http://www.cbsesamplepapers.info/

RD sharma solutions for class 11: http://www.cbselabs.com/forums/rd-sharma-class-11-solutions.46/

NCERT Solutions for maths in Video https://www.youtube.com/user/cbsepapers/videos

Draw a large scalene triangle on a sheet of paper.Name the vertices A, B and C. Find the mid-points (D and E) of two sides and connect them.Cut out and cut along line .

Place on quadrilateral with vertex E on vertex C. Write down your observations.

Shift to place vertex D on vertex B. Write down your observations.

What do you notice about the lengths and ?

Make a conjecture regarding the line joining the mid-point of two sides of a triangle.

A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices A, B, and C is denoted \triangle ABC.

In Euclidean geometry any three points, when non-collinear, determine a unique triangle and a unique plane (i.e. a two-dimensional Euclidean space).

Types of triangle

Euler diagram of types of triangles, using the definition that isosceles triangles have at least 2 equal sides, i.e. equilateral triangles are isosceles.

By relative lengths of sides

Triangles can be classified according to the relative lengths of their sides:

In an equilateral triangle all sides have the same length. An equilateral triangle is also a regular polygon with all angles measuring 60 °.[1]

In an isosceles triangle, two sides are equal in length.[note 1][2] An isosceles triangle also has two angles of the same measure; namely, the angles opposite to the two sides of the same length; this fact is the content of the isosceles triangle theorem, which was known by Euclid. Some mathematicians define an isosceles triangle to have exactly two equal sides, whereas others define an isosceles triangle as one with at least two equal sides.[2] The latter definition would make all equilateral triangles isosceles triangles. The 45â€“45â€“90 right triangle, which appears in the tetrakis square tiling, is isosceles.

In a scalene triangle, all sides are unequal,[3] and equivalently all angles are unequal. A right triangle is also a scalene triangle if and only if it is not isosceles.

Equilateral Triangle Isosceles triangle Scalene triangle

Equilateral Isosceles Scalene

Hatch marks, also called tick marks, are used in diagrams of triangles and other geometric figures to identify sides of equal lengths. A side can be marked with a pattern of “ticks”, short line segments in the form of tally marks; two sides have equal lengths if they are both marked with the same pattern. In a triangle, the pattern is usually no more than 3 ticks. An equilateral triangle has the same pattern on all 3 sides, an isosceles triangle has the same pattern on just 2 sides, and a scalene triangle has different patterns on all sides since no sides are equal. Similarly, patterns of 1, 2, or 3 concentric arcs inside the angles are used to indicate equal angles. An equilateral triangle has the same pattern on all 3 angles, an isosceles triangle has the same pattern on just 2 angles, and a scalene triangle has different patterns on all angles since no angles are equal.

By internal angles

Triangles can also be classified according to their internal angles, measured here in degrees.

A right triangle (or right-angled triangle, formerly called a rectangled triangle) has one of its interior angles measuring 90 ° (a right angle). The side opposite to the right angle is the hypotenuse, the longest side of the triangle. The other two sides are called the legs or catheti[4] (singular: cathetus) of the triangle. Right triangles obey the Pythagorean theorem: the sum of the squares of the lengths of the two legs is equal to the square of the length of the hypotenuse: a2 + b2 = c2, where a and b are the lengths of the legs and c is the length of the hypotenuse. Special right triangles are right triangles with additional properties that make calculations involving them easier. One of the two most famous is the 3â€“4â€“5 right triangle, where 32 + 42 = 52. In this situation, 3, 4, and 5 are a Pythagorean triple. The other one is an isosceles triangle that has 2 angles that each measure 45 degrees.

Triangles that do not have an angle measuring 90 ° are called oblique triangles.

A triangle with all interior angles measuring less than 90 ° is an acute triangle or acute-angled triangle. If c is the length of the longest side, then a2 + b2 > c2, where a and b are the lengths of the other sides.

A triangle with one interior angle measuring more than 90 ° is an obtuse triangle or obtuse-angled triangle. If c is the length of the longest side, then a2 + b2 < c2, where a and b are the lengths of the other sides.
A triangle with an interior angle of 180 ° (and collinear vertices) is degenerate.
A right degenerate triangle has collinear vertices, two of which are coincident.
A triangle that has two angles with the same measure also has two sides with the same length, and therefore it is an isosceles triangle. It follows that in a triangle where all angles have the same measure, all three sides have the same length, and such a triangle is therefore equilateral.

## Comments by Paras